Рулевое управление, рулевой механизм: принцип действия, устройство, ремонт. Рулевой механизм Рулевой червяк
5.3. Устройство и работа рулевого управления
Рулевое управление служит для поворота передних колес автомобиля во время его движения и состоит из рулевого привода и рулевого механизма. Для того чтобы движение колес автомобиля на повороте происходило без бокового скольжения, управляемые колеса должны поворачиваться на различные углы: внутреннее колесо на больший угол, а внешнее – на меньший.
Рулевой механизм служит для преобразования вращательного движения рулевого колеса в поступательное прямолинейное движение, передаваемое колесам. Для прямолинейного движения нужно преобразовать вращательное движение рулевого колеса в качание рулевой сошки или создать возвратно-поступательное движение рейки рулевого механизма. Помимо этого, рулевой механизм обеспечивает понижающее передаточное число, благодаря которому уменьшается усилие, прикладываемое водителем для управления колесами. Это особенно важно, когда автомобиль неподвижен или медленно двигается и вращение руля максимально затруднено.
Соотношение между углом поворота рулевого колеса и углом поворота колес называется передаточным числом рулевого управления. Передаточные числа могут быть постоянными и переменными. Рулевое управление с постоянным передаточным числом именуется «линейным». При линейном рулевом управлении поворот рулевого колеса на фиксированное количество градусов перемещает управляемые колеса на пропорциональный угол, зависящий от передаточного числа, при любом положении рулевого управления.
Рулевое управление с переменным передаточным числом именуется «пропорциональным». При пропорциональном рулевом управлении передаточное число изменяется с каждым поворотом рулевого колеса. Как правило, по мере увеличения угла поворота рулевого колеса скорость изменения угла поворота колес увеличивается. Передаточное число – это угол поворота рулевого колеса, деленный на угол поворота колес.
Обычно понижающее передаточное число рулевого управления находится в пределах от 14:1 до 22:1. При передаточных числах от 14:1 до 18:1, как правило, требуется усилитель рулевого управления. Для перемещения колес между предельными положениями требуется повернуть рулевое колесо на 3–4 полных оборота. Рулевой механизм должен быть достаточно прочным и выдерживать разные нагрузки, которым он подвергается в различных условиях движения. Водитель не должен ощущать через рулевое колесо толчки, сопровождающие движение.
5.3.1. Рулевые механизмы
Существует несколько различных вариантов конструкций рулевых механизмов, но основных типов два:
Рулевые механизмы с вращательным движением (рис. 5.26);
Рис. 5.26. Рулевой механизм с вращательным движением
Рулевые механизмы со скользящим движением (рис. 5.27).
Рис. 5.27. Рулевой механизм со скользящим движением
Рулевые механизмы с вращательным движением
Рулевые механизмы с вращательным движением имеют различные конструкции:
Шариковинтовой рулевой механизм;
Рулевой механизм типа «винт-гайка» с кольцами-ползунами;
Червячно-секторный рулевой механизм;
Червячно-роликовый рулевой механизм;
Рулевой механизм с червяком и роликовым пальцем.
На рис. 5.28 изображен шариковинтовой рулевой механизм. В нем используется несколько шариков, которые циркулируют в «дорожках», образованных канавками, имеющимися в рулевой гайке и на рулевом валу. При вращении рулевого вала шарики катятся по «дорожкам» и заставляют рулевую гайку перемещаться вверх или вниз по рулевому валу. Рулевую сошку вращает зубчатый сектор, который находится в зацеплении с зубьями на рулевой гайке.
Рис. 5.28. Шариковинтовой рулевой механизм
Передаточное число в этом рулевом механизме постоянное. Шарики снижают трение между подвижными элементами, поэтому рулевой механизм этого типа практически не подвержен износу. Повышенный люфт в рулевом механизме, как правило, можно устранить путем регулировки положения рулевого вала.
На рис. 5.29 изображен рулевой механизм с червяком и роликовым пальцем. В его конструкции используется цилиндрический червяк с неравномерным шагом. При вращении червяка конический палец перемещается в осевом направлении вдоль червяка. Рулевая сошка закреплена на соответствующем валу, соединенным с пальцем, и может поворачиваться на 70°. Износ рабочих элементов этого механизма относительно низкий, люфт в рулевом вале и между пальцем и червяком регулируется. Передаточное число рулевого механизма с червяком и роликовым пальцем пропорционально изменяется вследствие неравномерного шага червяка.
Рис. 5.29. Рулевой механизм с червяком и роликовым пальцем
Червячно-секторный рулевой механизм представлен на рис. 5.30.
Рис. 5.30. Червячно-секторный рулевой механизм
В рулевом механизме этого типа на конце рулевого вала предусмотрен цилиндрический червяк, который перемещает зубчатый сектор. Преимущество червячного рулевого механизма заключается в том, что можно легко добиться высокого передаточного числа – до 22:1. Зубчатый сектор находится в постоянном зацеплении с червяком, любой поворот рулевого вала вызывает поворот зубчатого сектора. Рулевая сошка закреплена на зубчатом секторе и может поворачиваться на 70°. Износ рулевого механизма этого типа относительно высокий из-за трения скольжения рабочих элементов. Недостаток червячно-секторного рулевого механизма состоит в том, что водителю требуется прикладывать к рулевому колесу значительное усилие.
На рис. 5.31 изображен рулевой механизм типа «винт-гайка» с кольцами-ползунами.
Рис. 5.31. Рулевой механизм типа «винт-гайка» с кольцами-ползунами
По принципу действия этот механизм аналогичен рулевому механизму с циркуляцией шариков. Кольца-ползуны, расположенные сбоку от рулевой гайки, передают перемещение гайки к рулевой вилке. Рулевая сошка, установленная на вал сошки, который находится на рулевой вилке, поворачивается на 90°. Износ рулевого механизма этого типа, вызываемый трением, как правило, высокий. Передаточное число постоянное.
Рис. 5.32 представляет червячно-роликовый рулевой механизм.
Рис. 5.32. Червячно-роликовый рулевой механизм
В этом рулевом механизме для передачи движения от червяка вместо зубчатого сектора используется ролик. Червяк в этом рулевом механизме сводится на конус в направлении к центру и принимает форму, напоминающую песочные часы (глобоидную). Преимущество этой формы червяка в том, что она позволяет ролику поворачиваться относительно своего центра, и это уменьшает размер рулевого механизма. Рулевая сошка прикреплена к валу ролика и может поворачиваться на 90°. Передаточное число остается постоянным. Повышенный люфт можно устранить, отрегулировав положение рулевого вала.
Рулевой механизм со скольжением
На рис. 5.33 изображен рулевой механизм с постоянным шагом зубьев – наиболее распространенный тип рулевого механизма, применяемый в современных автомобилях.
Рис. 5.33. Рулевой механизм с постоянным шагом зубьев
В реечных рулевых механизмах для создания линейного перемещения рейки используется вращающаяся шестерня. Зубья шестерни находятся в постоянном зацеплении с зубьями рейки, и любое перемещение вала рулевой колонки вызывает поперечное перемещение рулевой рейки. Перемещение рейки напрямую передается к рулевым тягам, установленным на обоих концах рейки. Шаровые шарниры, расположенные между рейкой и рулевыми тягами, обеспечивают возможность независимого вертикального перемещения рулевых тяг. Рейка удерживается в зацеплении с шестерней с помощью подпружиненной прижимной колодки, которая регулирует любой зазор между зубьями. Трение скольжения между рейкой и шестерней осуществляет амортизирующее действие и поглощает толчки, возникающие при движении.
В числе преимуществ реечного рулевого механизма – прямое рулевое управление. Передаточное число постоянное.
На рис. 5.34 изображена рейка рулевого механизма с переменным шагом зубьев. Для наглядности корпус и шестерня рулевого механизма не показаны.
Рис. 5.34. Рейка рулевого механизма с переменным шагом зубьев
Реечный рулевой механизм с переменным шагом зубьев работает так же, как и описанный выше реечный рулевой механизм с постоянным шагом. В центре рейки шаг зубьев больше, чем на краях. Переменный шаг дает возможность увеличивать передаточное число рулевого управления по мере вращения шестерни. Зубья в центре рейки обеспечивают большее перемещение рейки при каждом повороте шестерни, для чего требуется относительно большое усилие. Зубья на концах рейки обеспечивают меньшее перемещение рейки, для чего требуется относительно небольшое усилие водителя. Для устранения этого недостатка на современных автомобилях устанавливаются усилители рулевого управления. Фактически в этой системе, чем больше поворачивается рулевое колесо, тем меньше усилие. При движении по прямой рулевое управление тяжелее, чем при повороте рулевого колеса в предельное положение – это облегчает маневрирование и парковку.
В реечном рулевом механизме с переменным шагом предусмотрено пропорционально возрастающее передаточное число.
На рис. 5.35 (см. также на цветной вклейке рис. ЦВ 5.35) изображена типовая гидравлическая система усилителя рулевого управления, оснащенная жидкостным насосом, который служит для подачи рабочей жидкости под давлением в гидравлический контур. Насос может иметь электрический привод и находиться в бачке усилителя рулевого управления или иметь механический привод от двигателя.
Рис. 5.35. Гидравлическая система усилителя рулевого управления
Механические насосы, как правило, снабжены отдельным бачком для рабочей жидкости. Рабочая жидкость под давлением, созданным насосом, поступает в золотниковый распределительный клапан в рулевом механизме. Когда рулевой вал находится в прямолинейном положении, рабочая жидкость проходит через золотниковый распределительный клапан и возвращается в бачок. При повороте рулевого колеса золотниковый распределительный клапан направляет рабочую жидкость на соответствующую сторону поршня, который располагается в цилиндре на конце реечного рулевого механизма. Тяга, присоединенная к поршню, соединена с рейкой, и любое давление рабочей жидкости, воздействующее на поршень, способствует перемещению рейки. Рабочая жидкость с обратной стороны возвращается в бачок через золотниковый распределительный клапан. При повороте рулевого колеса в другом направлении происходит противоположный процесс. Если усилитель рулевого управления выходит из строя, сохраняется механическое действие рулевого механизма, но при этом придется прикладывать гораздо большее усилие.
5.3.2. Рулевой привод
Рулевой привод служит для передачи усилия водителя через рулевое колесо к управляемым колесам автомобиля. Рулевой механизм преобразует вращательное движение рулевого колеса в прямолинейное движение, которое тянет тяги рулевого привода. Преобразованное движение передается от рулевого механизма к рулевому приводу. Шаровые шарниры на концах продольных и поперечных рулевых тяг обеспечивают возможность любых поворотных и вращательных перемещений в приводе. Компоновка и количество поперечных рулевых тяг в рулевом приводе зависит от конструкции моста и подвески.
Варианты компоновки приводов рулевого механизма
Простейшая конструкция рулевого привода – это односекционная поперечная рулевая тяга, перемещаемая рулевой сошкой (рис. 5.36). Рулевая сошка толкает или тянет продольную рулевую тягу для перемещения рычага, который соединен с поворотным шарниром на поворотном кулаке. Поперечная рулевая тяга соединяет оба поворотных шарнира на поворотных кулаках передних колес автомобиля. Любое перемещение одного из поворотных шарниров передается через рулевую тягу к шарниру на противоположном поворотном кулаке.
Рис. 5.36. Рулевой привод с односекционной рулевой тягой
Рулевой привод этого типа, как правило, применяется в автомобилях с жестким мостом, в которых расстояние между рычагами поворотных кулаков не изменяется. Для соединения продольной рулевой тяги с рычагами поворотных кулаков служат шаровые шарниры.
На рис. 5.37 изображен доработанный вариант односекционной рулевой тяги – рулевой привод с двухсекционной рулевой тягой, перемещаемой рулевой сошкой. Рулевая сошка тянет или толкает две отдельные рулевые тяги, которые соединены с рычагами поворотных кулаков посредством шаровых шарниров. Перемещение рулевых тяг поворачивает поворотные шарниры на поворотных кулаках. Рулевой привод этого типа, как правило, применяется в автомобилях с независимой подвеской, в которой поворотные шарниры могут перемещаться один независимо от другого.
Рис. 5.37. Рулевой привод с двухсекционной рулевой тягой
Рулевой привод с трехсекционной рулевой тягой, перемещаемой рулевой сошкой, представлен на рис. 5.38. В этой рулевой тяге предусмотрен маятниковый рычаг, который передает движение рулевого управления к противоположной стороне автомобиля. Рулевой привод этого типа применяют в автомобилях с независимой подвеской, но у этого варианта конструкции высокая стоимость.
Рис. 5.38. Рулевой привод с трехсекционной рулевой тягой
Трехсекционная рулевая тяга обеспечивает самую высокую степень точности и максимальный контроль над рулевым управлением. При движении автомобиля по неровной дороге толчки передаются через рулевой привод и механизм рулевого управления водителю. Для смягчения этих толчков на рулевой привод устанавливают амортизатор. Амортизаторы рулевого управления могут быть встроены в рулевой привод любого типа (рис. 5.39), но в автомобилях с реечным рулевым механизмом их применяют не часто. Амортизатор рулевого управления помогает противодействовать повышению усилий на рулевом колесе и непреднамеренному перемещению рулевого колеса.
Рис. 5.39. Амортизаторы рулевого управления
На рис. 5.40 изображены рулевые приводы с двухсекционными рулевыми тягами перемещаемой рейки. В реечной системе рулевого управления для передачи рулевого воздействия к поворотным кулакам используются две рулевые тяги.
Рис. 5.40. Рулевые приводы с двухсекционными рулевыми тягами
Существуют также рулевые рейки для соединения с поворотными кулаками. В них применяются рулевые привода похожей конструкции. Прямолинейное перемещение рулевой рейки передается через шаровой шарнир на рулевые тяги.
5.3.3. Диагностика и техническое обслуживание передней, задней подвески и рулевого управления
Неисправности и способы их устранения
Величина свободного хода рулевого колеса указана в инструкции по эксплуатации автомобиля. Увеличенный свободный ход обнаруживается покачиванием рулевого колеса. Причин для его возникновения может быть несколько:
Ослабление затяжки гаек крепления шаровых шарниров рулевых тяг;
Увеличенный зазор шаровых шарниров рулевых тяг;
Увеличенный зазор шаровых шарниров рычагов передней подвески;
Люфт в результате износа передних ступичных подшипников;
Люфт в результате износа зубьев рулевого механизма;
Люфт в упругой муфте, соединяющей рулевой механизм с валом рулевого колеса;
Люфт в подшипниках рулевого вала рулевого колеса.
Для устранения неисправности необходимо проверить затяжку всех креплений и произвести замену изношенных деталей.
Шум (стуки) в рулевом управлении могут вызвать следующие причины:
Ослабление гаек крепления шаровых шарниров рулевых тяг;
Увеличение зазора между упором рейки и гайкой;
Ослабление гаек крепления рулевого механизма, а также все вышеперечисленные неисправности.
Тугое вращение рулевого колеса:
Повреждение подшипника верхней опоры вала рулевого колеса;
Понижение давления воздуха в шинах передних колес;
Повреждение деталей телескопической стойки и подвески колес;
Нарушение работы насоса рулевого гидроусилителя;
Попадание посторонних частиц в гидросистему рулевого управления;
Повышенный уровень масла в бачке насоса рулевого управления;
Износ или повреждение манжет рулевого механизма и насоса;
Износ шлангов гидросистемы.
Для устранения неисправностей необходимо проверить затяжку всех креплений и произвести замену изношенных узлов и деталей, а также проверить уровень жидкости гидроусилителя рулевого управления и заменить изношенные и поврежденные детали гидроусилителя. Данный текст является ознакомительным фрагментом.
Из книги Пилотируемые полеты на Луну автора Шунейко Иван Иванович2.1. Реактивная система управления корабля Apollo. Общая характеристика системы управления Все 3 отсека корабля Apollo – командный отсек, служебный отсек и лунный корабль – имеют самостоятельные реактивные системы управления (рис. 21.1). Рис. 21.1. Корабль Apollo: 1 – лунный корабль; 2 –
Из книги Теплотехника автора Бурханова Наталья Из книги Определение и устранение неисправностей своими силами в автомобиле автора Золотницкий ВладимирРабота бесплатформенной аварийной системы управления Двумя участками, на которых работа аварийной системы управления в максимальной степени подвержена влиянию динамики полета лунного корабля, являются участки спуска и подъема (обычно разделенные отрезком времени, в
Из книги Последний рывок советских танкостроителей автора Апухтин Юрий Из книги Мир Авиации 2000 01 автора Автор неизвестенДиагностика неисправностей рулевого управления и их устранение Повышенная передача но руль дорожных толчков при движении автомобиля. Вибрация и стуки, ощущаемые на рулевом колесе Диагностика элементов рулевого управления сводится к прослушиванию стуков при резких
Из книги Обслуживаем и ремонтируем Волга ГАЗ-3110 автора Золотницкий Владимир АлексеевичРабота на поприще СТК Этим «Посмотрим» заканчивается мой дневник, дальше записей я не вёл по причине какой-то беспросветной перспективы создания танка, принципиально ничего не менялось и работы продолжались в том же духе, что и в 1989 г.После избрания меня председателем
Из книги Советы автомеханика: техобслуживание, диагностика, ремонт автора Савосин СергейМужская работа Владимир РАТКИН Москва«Гул моторов нарушал тишину нашего командного пункта. Вдруг я услышал, как кто-то бранится, призывая на помощь всех святых. …Вероятно, опять какая-то авария, подумал я. В этот час это было неприятно. Регулярно в десять часов вечера
Из книги Грузовые автомобили. Ведущие мосты автора Мельников ИльяВозможные неисправности рулевого управления с
Из книги Грузовые автомобили. Кривошипно-шатунный и газораспределительный механизмы автора Мельников Илья2.2. Устройство и работа Бензиновый двигатель – это двигатель с возвратно-поступательным движением поршней и принудительным воспламенением, работающий на топливно-воздушной смеси. В процессе сгорания запасенная в топливе химическая энергия преобразуется в тепловую, а
Из книги История электротехники автора Коллектив авторов4.1. Устройство и работа Для передачи крутящего момента от коленчатого вала двигателя к колесам автомобиля необходимо сцепление (если у автомобиля ручная КПП), коробка передач, карданная передача (для заднеприводной машины), главная передача с дифференциалом и полуоси
Из книги автора5.2. Устройство и работа передней и задней подвески Рассмотрим наиболее распространенные виды подвески переднего моста.1. Двойные поперечные рычаги (рис. 5.3). Рис. 5.3. Передняя подвеска с двойными поперечными рычагамиЗдесь показаны элементы базовой системы независимой
Из книги автораНеисправности подвески и рулевого управления К неисправностям подвески и рулевого управления относятся:– увеличение свободного хода (люфта) рулевого колеса;– повышение силы, необходимой для поворота передних колес, слишком "жесткое" рулевое управление;– подтекание
Из книги автораРегулировка рулевого управления Техническое состояние рулевого управления непосредственно влияет на безопасность движения, поэтому регулировать его механизмы надо своевременно и особенно тщательно. Приближенно оценить техническое состояние рулевого колеса, т.е.
Из книги автораТехническое обслуживание системы рулевого управления с гидроусилителем руля Люфт руля на автомобилях с гидроусилителем измеряют при работающем двигателе. Как правило, рулевой механизм с гидроусилителем прост в обслуживании. Даже когда отказывает насос
Из книги автораСхема, устройство работа В механизм газораспределения входят: распределительный вал и его привод. Передаточные детали – толкатели с направляющими втулками, а при верхнем расположении клапанов еще штанги и коромысла, клапаны, их направляющие втулки и пружины, опорные
Из книги автора5.5.4. АВТОМАТИЗИРОВАННЫЕ СИСТЕМЫ УПРАВЛЕНИЯ ТЕХНОЛОГИЧЕСКИМИ ПРОЦЕССАМИ И КОМПЛЕКСЫ ПРОТИВОАВАРИЙНОГО УПРАВЛЕНИЯ Работы по созданию автоматизированных систем управления технологическими процессами (АСУ ТП) электроэнергетических объектов были начаты с появлением
В процессе движения водитель испытывает постоянную потребность в контроле за автомобилем и дорогой. Очень часто возникает необходимость смены режима движения: заезда на парковку или выезда с нее, изменения направления следования (поворота, разворота, перестроения, опережения, обгона, объезда, движения задним ходом и пр.), осуществления остановки или стоянки. Реализацию указанных действий обеспечивает рулевое управление автомобиля, являющееся одной из важнейших систем любого транспортного средства.
Общее устройство и принцип работы
Общее устройство рулевого управления, несмотря на большое количество узлов и агрегатов, представляется достаточно простым и действенным. Логистичность и оптимальность конструкции и функционирования системы доказывается хотя бы тем, что за многолетнюю теорию и практику автомобилестроения рулевое управление не претерпело глобальных сущностных изменений. Изначально оно включает в себя три основные подсистемы:
- рулевую колонку, предназначенную для передачи вращательного движения руля;
- рулевой механизм — устройство, преобразующее вращательные движения руля в поступательные перемещения деталей привода;
- рулевой привод, имеющий целью доведение управляющих функций до поворотных колес.
Помимо основных подсистем, крупнотоннажные грузовики, маршрутные транспортные средства и многие современные легковые автомобили имеют специальное устройство усилителя руля, позволяющее использовать создаваемое силовое воздействие, облегчающее его движение.
Таким образом, схема рулевого управления достаточно проста и функциональна. Рулевое колесо, как первичный узел, хорошо знакомый каждому водителю, под влиянием его мысли и воздействием силы совершает вращательные движения в необходимом направлении. Эти движения посредством рулевого вала передаются на специальный рулевой механизм, где совершается преобразование крутящего момента в плоскостные перемещения.
Последние через привод сообщают нужные углы поворота управляющим колесам. В свою очередь, пневматический, гидравлический, электрический и прочие усилители (при их наличии) облегчают вращение руля, делая процесс управления транспортным средством более комфортным.
Это основной принцип, по которому работает рулевое управление автомобиля.
Рулевая колонка
Схема рулевого управления обязательно включает в себя колонку, которая состоит из следующих деталей и узлов:
- руля (или рулевого колеса);
- вала (или валов) колонки;
- кожуха (трубы) колонки с подшипниками, предназначенными для вращения вала (валов);
- крепежных элементов для обеспечения неподвижности и устойчивости конструкции.
Схема действия колонки заключается в приложении водительского усилия на рулевое колесо и последующей передаче направленно-вращательных движений руля всей системе, если водитель желает изменить режим движения автомобиля.
Рулевой механизм
Рулевой механизм любого автомобиля — это способ преобразования вращения колонки в поступательные движения рулевого привода. Иными словами, функции механизма сводятся к тому, чтобы повороты руля превратились в нужные перемещения тяг и, в конечно счете, колес.
Устройство рулевого механизма является вариативным. В настоящее время оно представлено двумя основными принципами — червячным и реечным, которые отличаются способами преобразования крутящего момента.
Общее устройство рулевого механизма червячного типа включает в себя:
- пару деталей «червяк-ролик»;
- картер указанной пары;
- рулевую сошку.
Усилитель руля
Рулевое управление современных автомобилей оснащается специальной дополнительной опцией — усилителем. Усилитель рулевого управления — это подсистема, состоящая из механизма, позволяющего значительно снизить усилия водителя при повороте руля и управлении автомобилем.
Основными видами усилителей руля являются:
- пневмоусилитель (использующий силу сжатого воздуха);
- гидроусилитель (основанный на изменении давления специальной жидкости);
- электроусилитель (действующий на основе электрического двигателя);
- электрогидроусилитель (применяющий комбинированный принцип действия) ;
- механический усилитель (специальный механизм, имеющий увеличенное передаточное отношение).
Изначально система усиления применялась на крупнотоннажной и крупногабаритной технике. Здесь мышечной силы водителя было явно недостаточно для того, чтобы осуществить задуманный маневр. В современных легковых автомобилях она используются в качестве средства обеспечения комфортности при рулении.
Основы эксплуатации системы управления
В процессе эксплуатации автомобиля отдельные узлы и агрегаты, входящие в систему рулевого управления, постепенно приходят в негодность. Особенно, это усугубляется в условиях движения по некачественным дорогам. Свою лепту в износ системы вносит и недостаточное внимание водителя, уделяемое профилактике неисправностей, а также низкое качество запасных частей и комплектующих. Далеко не последнюю роль играет и низкая квалификация сервисменов, которым водитель доверяет обслуживание своего автомобиля.
Важность системы управления автомобилем обусловлена требованиями общей безопасности дорожного движения. Так, нормы «Основных положений по допуску ТС к эксплуатации…» и пункта 2.3.1 ПДД категорически запрещают движение (даже до автосервиса или места парковки) на транспортном средстве при наличии неисправностей в системе рулевого управления . К таким неисправностям относятся:
- превышение допустимого свободного хода (люфта) руля (10 градусов для легковых машин, 25 — для грузовых, 20 — для автобусов);
- перемещение деталей и узлов системы управления, не предусмотренных заводом-изготовителем;
- наличие незафиксированности в резьбовых соединениях;
- неадекватное функционирование усилителя рулевого управления .
Однако этот перечень неисправностей не является исчерпывающим. Помимо них, есть и иные «популярные» изъяны системы:
- тугое вращение или заедание руля;
- стук или биение, отдающие в руль;
- негерметичность системы и пр.
Подобные неисправности считаются допустимыми при эксплуатации автомобиля, если не обусловливают отмеченных ранее недостатков системы.
Подведем итог. Рулевое управление является одной из важнейших составных частей конструкции современного транспортного средства. Оно требует постоянного контроля за своим состоянием и осуществления своевременного и качественного сервисного и технического обслуживания.
В процессе эксплуатации изнашиваются рабочие поверхности червяка, ролика, подшипников, а также вала сошки, бронзовых втулок, головки регулировочного винта, шайбы и Т-образный паз вала сошки. Вследствие этого в рулевом механизме появляются зазоры, которые могут быть причинами стуков во время движения, вибрации передних колес, потери устойчивости автомобиля и других вредных явлений. Показателем появления зазора служит увеличенный свободный ход рулевого колеса. Повышенный зазор возникает в первую очередь в зацеплении червяка и ролика, а затем увеличивается осевое перемещение червяка (вместе с валом рулевого механизма). Указанные зазоры по мере их возникновения должны устраняться регулировкой .
Кроме износа перечисленных деталей, причинами увеличенного свободного хода рулевого колеса могут быть ослабление крепления сошки на валу рулевого механизма или крепления картера рулевого механизма к раме, а также увеличенные зазоры в шарнирах рулевых тяг и передней подвески. Поэтому перед регулировкой рулевого механизма следует проверить состояние рулевых тяг передней подвески, устранить зазоры в шарнирах и подтянуть ослабевшие крепления.
Рулевой механизм не нуждается в регулировке в том случае, если свободный ход рулевого колеса при движении по прямой не превышает 25 мм (около 8°) при измерении его на ободе.
Больший свободный ход, остающийся после подтяжки ослабевших соединений и устранения зазоров в шарнирах, свидетельствует о необходимости регулировки рулевого механизма.
Осевое перемещение червяка и боковой зазор в зацеплении можно регулировать без снятия рулевого механизма с автомобиля.
Рулевой механизм нужно регулировать в такой последовательности:
- Проверить, нет ли осевого перемещения червяка. Для этого нужно, приложив палец к ступице рулевого колеса и к корпусу переключателя указателей поворота, несколько раз повернуть рулевое колесо на небольшой угол вправо и влево. При наличии осевого перемещения червяка палец будет ощущать осевое перемещение ступицы рулевого колеса относительно корпуса переключателя.
- Для устранения осевого перемещения червяка необходимо повернуть червяк вправо или влево примерно на один-полтора оборота и затем повернуть его на некоторый угол в обратном направлении так, чтобы гребни ролика не касались нитки нарезки и в зацеплении червяка и ролика был достаточно большой боковой зазор. После этого необходимо отвернуть на две-три нитки стопорную гайку 1 и подтянуть регулировочную гайку 2 так, чтобы червяк легко вращался и не имел осевого перемещения. Затем, придерживая регулировочную гайку ключом от проворачивания, необходимо затянуть стопорную гайку и убедиться, нет ли осевого перемещения червяка и легко ли он вращается.
- Если после регулировки осевого перемещения червяка возникнет течь масла по резьбе регулировочной гайки, то под стопорную гайку необходимо подложить картонную или алюминиевую прокладку толщиной 0,1-1 мм. Затем нужно проверить величину бокового зазора в зацеплении. Для этого необходимо установить колеса в положении езды по прямой и отъединить левый шаровой палец средней рулевой тяги от сошки.
- Во избежание повреждения резьбы на пальце необходимо предварительно ударить несколько раз молотком по боковой поверхности головки сошки или сдвинуть палец с места специальным съемником. После этого, сохраняя положение сошки, соответствующее движению по прямой, и покачивая сошку за головку, определяют величину бокового зазора в зацеплении. В пределах поворота червяка на угол около 60° от среднего положения (3°32′ поворота сошки) вправо и влево зазора в зацеплении не должно быть.
- Если беззазорного зацепления нет или беззазорное зацепление ощущается на участках больше 60° поворота рулевого колеса от среднего положения, необходимо отрегулировать боковой зазор в зацеплении червяка и ролика. Для этого, отвернув на 1-2 оборота гайку 27 регулировочного винта 30 вала сошки и вставив в прорезь винта отвертку, установить беззазорное зацепление в пределах поворота червяка на угол 60° от среднего положения вправо и влево. Затем, придерживая отверткой регулировочный винт от проворачивания, затянуть контргайку и проверить произведенную регулировку.
- Убедившись в правильности сделанной регулировки, необходимо провернуть рулевое колесо из одного крайнего положения в другое и убедиться в том, что во всем диапазоне поворота рулевого механизма нет заеданий или тугого вращения.
- При регулировке осевого перемещения червяка и бокового зазора в зацеплении ни в коем случае нельзя делать излишнюю затяжку, так как она приведет при чрезмерно затянутых подшипниках червяка к их преждевременному износу, а излишняя затяжка зацепления (червяка и ролика) может привести к износу ролика и червяка или даже разрушению их рабочих поверхностей. Кроме того, при излишне тугом вращении рулевого механизма передние колеса не будут стремиться под действием веса передней части автомобиля возвратиться в положение, соответствующее движению по прямой при выходе автомобиля из поворота, что значительно ухудшит устойчивость автомобиля.
- По окончании регулировки необходимо соединить шаровой палец рулевых тяг с сошкой и проверить правильность регулировки рулевого механизма при движении автомобиля.
- Регулировку можно считать законченной, если свободный ход рулевого колеса при неподвижных передних колесах, установленных при движении по прямой (при отсутствии зазоров в шарнирах рулевых тяг и передней подвески и надежном закреплении рулевого механизма на раме), будет не более 10-15 мм при измерении по ободу рулевого колеса. Перед снятием рулевого механизма с автомобиля необходимо учитывать; что он вынимается только через подкапотное пространство вниз, при снятых рулевом колесе 58, рычаге 52 механизма управления коробкой перемены передач и рукоятке 79 переключателя указателей поворота.
Рулевой механизм после разборки и регулировки устанавливается в обратном порядке и в той же комплектности. Следует учесть, что при соединении сошки с рулевым механизмом ее нужно устанавливать по меткам, имеющимся на торце большой головки сошки и торце резьбового конца вала сошки. Сошка должна быть надета так, чтобы риска на торце ее большой головки совпадала с меткой (керном) на торце резьбового конца вала сошки.
Несовпадение рисок приведет при крайнем положении руля к упору ролика в картер рулевого механизма, что очень опасно, так как повлечет за собой недостаточный разворот передних колес в одну из сторон и, возможно, поломку рулевого механизма.
При имеющихся 36 шлицах ошибка хотя бы на один шлиц при установке сошки даст уменьшение возможного поворота сошки в одну из сторон на 10°.
Продольная ось правильно установленной сошки в среднем положении должна быть параллельна оси рулевой колонки и расположена впереди по ходу автомобиля, а сошка должна свободно поворачиваться от среднего положения вправо и влево на угол 45° в каждую сторону (немного более двух оборотов рулевого колеса). Размеры сошки маятникового рычага и рычагов рулевой трапеции, а также их взаимное расположение подобраны так, что для поворота колес вправо и влево сошка должна повернуться на угол около 37°.
Таким образом, при полностью повернутых передних колесах в рулевом механизме остается запас хода.
Рулевой механизм следует устанавливать на автомобиль так, чтобы при полностью затянутых болтах 15 крепления картера к лонжерону и рулевой колонке с надетой на нее прокладкой 50, прижатой к опоре 45 колонки, отверстия в кронштейне 49 крепления рулевой колонки совпадали с отверстиями фланцевых гаек, приваренных к подвижной планке 47, помещенной внутри опоры. Возможны случаи, когда вследствие деформации кузова при аварии или длительной езды но неблагоустроенным дорогам при передвижении планки не удается добиться совпадения отверстий и требуется приложение усилия для установки на место рулевой колонки. В этом случае необходимо подпилить внутренние торцы одной или двух приваренных к лонжерону втулок 13 и 14, к которым крепится картер рулевого механизма, и проверить правильность положения колонки.
При деформациях кузова и подмоторной рамы автомобиля возможны также случаи, когда при предварительно поднятой вверх рулевой колонке и затянутых болтах крепления картера рулевого механизма колонка не будет касаться опоры 45. Для устранения этого необходимо распилить в нужную сторону два отверстия в картере рулевого механизма или положить прокладки требуемой толщины между опорой и рулевой колонкой и поставить удлиненные болты.
Неправильная установка рулевого механизма на автомобиль, при которой вал и рулевая колонка могут изогнуться, вызовет повышенные усилия на рулевом колесе и в механизме управления коробкой перемены передач, а также расшатывание крепления колонки к картеру. Кроме того, это явится причиной повышенного износа верхнего подшипника вала руля. При большом же смещении изгиб вала руля может вызвать поломку вала рулевого механизма около червяка.
При снятии рулевого колеса с вала необходимо предварительно сделать метки на ступице и валу, позволяющие установить рулевое колесо при сборке в среднее положение.
Ставить рулевое колесо на вал по среднему положению, определенному по его оборотам вправо и влево, не следует, так как в этом случае спицы рулевого колеса при движении по прямой не будут располагаться горизонтально.
Для того чтобы снять рулевое колесо с автомобиля, необходимо вначале вынуть крышку 61 включателя сигнала 59. Это необходимо сделать с помощью тонкой отвертки или, еще лучше, лезвием ножа, вставляя их в горизонтальный зазор между крышкой и включателем около одного из концов крышки со стороны большего сектора рулевого колеса, и последующего подъема конца крышки. При этом одна из пружин 60, удерживающих крышку, будет утоплена внутрь включателя, и крышка легко снимется. Затем, отвернув два винта 65, снять включатель сигнала и основание 66 включателя сигнала, для чего отвернуть три винта 70 и вынуть пружины 73 из углублений ступицы рулевого колеса. После этого, отвернув гайку на валу руля, снять рулевое колесо с помощью специального съемника.
При отсутствии съемника рулевое колесо можно снимать, ударяя молотком, обязательно только через медную или алюминиевую прокладку, по торцу вала руля, навернув во избежание повреждения резьбы предварительно заподлицо с торцом вала гайку 69.
Рулевое колесо устанавливают в обратном порядке. Однако крышки включателя сигнала во избежание деформации или поломки пружин необходимо устанавливать в следующем порядке. Необходимо надеть выемку на торце крышки на одну из пружин 60, расположив при этом крышку так, чтобы ее нижний торец был прижат к включателю сигнала, а второй конец не входил бы в паз включателя. Утопить пальцем руки вторую пружину в прорезь включателя и, прижимая другой рукой крышку к плоскости включателя и не отпуская пружины, плавно вдвинуть крышку на место.
После этого, нажимая на крышку, несколько сдвинуть ее в сторону меньшего сектора рулевого колеса и вставить зуб на торце крышки в паз включателя сигнала со стороны большего сектора рулевого колеса.
Установка крышки на место в другой последовательности или другим способом, например сверху, приведет к деформации или даже поломкам пластинчатых пружин, в связи с чем необходимо строго придерживаться указанного выше порядка установки крышки во включатель сигнала.
Сошка рулевого механизма соединяется с валом сошки при помощи мелких конических шлицев с малым углом конуса на валу и затягивается гайкой с пружинной шайбой. Поэтому для снятия сошки необходимо применять специальный съемник. Нельзя снимать сошку ударами молотка, так как это вызовет появление вмятин на ролике вала сошки, что в дальнейшем приведет к преждевременному износу рабочей пары рулевого механизма.
Рис. 1
Рулевой механизм червячного типа состоит из:
Рулевого колеса с валом,
Картера червячной пары,
Пары «червяк-ролик»,
Рулевой сошки.
В картере рулевого механизма в постоянном зацеплении находится пара «червяк-ролик». Червяк есть не что иное, как нижний конец рулевого вала, а ролик, в свою очередь, находится на валу рулевой сошки. При вращении рулевого колеса ролик начинает перемещаться по винтовой нарезке червяка, что приводит к повороту вала рулевой сошки. Червячная пара, как и любое другое зубчатое соединение, требует смазки, и поэтому в картер рулевого механизма заливается масло, марка которого указана в инструкции к автомобилю. Результатом взаимодействия пары «червяк-ролик» является преобразование вращения рулевого колеса в поворот рулевой сошки в ту или другую сторону. А далее усилие передается на рулевой привод и от него уже на управляемые (передние) колеса.
Рулевой привод, применяемый с механизмом червячного типа, включает в себя:
Правую и левую боковые тяги,
Среднюю тягу,
Маятниковый рычаг,
Правый и левый поворотные рычаги колес.
Каждая рулевая тяга на своих концах имеет шарниры, для того чтобы подвижные детали рулевого привода могли свободно поворачиваться относительно друг друга и кузова в разных плоскостях.
К достоинствам механизма «червяк-ролик» относятся:
Низкая склонность к передаче ударов от дорожных неровностей
Большие углы поворота колес
Возможность передачи больших усилий
Недостатками являются:
Большое количество тяг и шарнирных сочленений с вечно накапливающимися люфтами
- «тяжелый» и малоинформативный руль
Сложности в технологии изготовления
Рулевой механизм типа “винт-гайка-сектор”

Рис. 2 Рулевой механизм типа "винт -- шариковая гайка -- рейка -- сектор"
1 -- распределитель;
3 -- шарики с трубкой рециркуляции;
4 -- поршень-рейка;
5 -- зубчатый сектор;
6 -- вал сошки;
7 -- ограничительный клапан
Полное название - "винт-шариковая гайка-рейка-сектор". Винт 2, которым оканчивается рулевой вал, через циркулирующие по резьбе шарики 3 толкает вдоль своей оси поршень-рейку 4. А тот в свою очередь поворачивает зубчатый сектор 5 рулевой сошки. Из-за возможности передавать большие моменты, устанавливается на грузовиках, пикапах и больших внедорожниках, работающих в экстремальных условиях.
Преимущества рулевого механизма “винт-шариковая гайка-рейка-сектор”:
Возможность конструкции с высоким передаточным числом
Недостатки рулевого механизма “винт-шариковая гайка-рейка-сектор”:
Нетехнологичен
Дорогой
Большие габариты
Тяжелый
Рулевой механизм реечного типа

В рулевом механизме «шестерня- рейка» усилие к колесам передается с помощью прямозубой или косозубой шестерни, установленной в подшипниках, и зубчатой рейки, перемещающейся в направляющих втулках. Для обеспечения беззазорного зацепления рейка прижимается к шестерне пружинами. Шестерня рулевого механизма соединяется валом с рулевым колесом, а рейка -- с двумя поперечными тягами, которые могут крепиться в середине или по концам рейки. Полный поворот управляемых колес из одного крайнего положения в другое осуществляется за 1,75...2,5 оборота рулевого колеса. Передаточные отношения механизма определяются отношением числа оборотов зубчатого колеса, равное числу оборотов рулевого колеса, к расстоянию перемещения рейки.
Реечный механизм рулевого управления состоит из картера, отлитого из алюминиевого сплава. В полости картера на шариковом и роликовом подшипниках установлено приводное зубчатое колесо. На картере и на пыльнике выполнены метки для правильной сборки механизма рулевого управления. Зубчатое колесо находится в зацеплении с зубчатой рейкой, которая поджимается к зубчатому колесу пружиной через металлокерамический упор. Пружина поджимается гайкой со стопорным кольцом, создавая сопротивление отворачиванию гайки. Подпружиненным упором облегчается беззазорное зацепление зубчатого колеса с зубчатой рейкой по всей величине хода. Рейка одним концом опирается на упор, а другим -- на разрезную пластмассовую втулку. Ход рейки ограничивается в одну сторону кольцом, напрессованным на рейку, а в другую сторону -- втулкой резино-металлического шарнира левой рулевой тяги. Полость картера механизма рулевого управления защищена от загрязнения гофрированным чехлом.
Вал рулевого управления соединяется с приводным зубчатым колесом эластичной муфтой. Верхняя часть вала опирается на шариковый радиальный подшипник, запрессованный в трубу кронштейна. На верхнем конце вала на шлицах через демпфирующий элемент крепится гайкой рулевое колесо.
Рулевой механизм с переменным отношением
Около нулевого положения рулевого колеса, когда едешь по прямой на высокой скорости, излишняя острота рулевого управления нежелательна, заставляет водителя напрягаться. А при парковке или развороте, наоборот, хотелось бы иметь передаточное отношение поменьше -- чтобы поворачивать руль на как можно меньший угол. Для этого существует несколько схем реечных рулевых механизмов.

Так работает реечный рулевой механизм ZF с переменным передаточным отношением. Здесь изменяются профиль зубьев рейки и плечо зацепления

Реечный рулевой механизм Honda VGR (Variable Gear Ratio -- переменное передаточное отношение) использовался на автомобилях Honda NSX
Фирма ZF использует зубья рейки с переменным профилем: в околонулевой зоне зубья треугольные, а ближе к краям -- трапецеидальной формы. Шестерня входит с ними в зацепление с разным плечом, что и помогает немного изменить передаточное отношение. А другой, более сложный, вариант использовала Honda на своем суперкаре NSX. Здесь зубья рейки и шестерни сделаны с переменными шагом, профилем и кривизной. Правда, шестерню приходится двигать вверх-вниз, но зато варьировать передаточное отношение можно в гораздо более широких пределах.
Рулевой привод состоит из двух горизонтальных тяг и поворотных рычагов телескопических стоек передней подвески. Тяги соединяются с поворотными рычагами при помощи шаровых шарниров. Поворотные рычаги приварены к стойкам передней подвески. Тяги передают усилие на поворотные рычаги телескопических стоек подвески колес и соответственно поворачивают их вправо или влево.
К преимуществам реечного рулевого механизма относится:
Малая масса
Компактность
Невысокая цена
Минимальное количество тяг и шарниров
Простота соединения рулевого механизма с управляемыми колесами
Прямая передача усилия
Высокая жесткость и КПД
Легкость в оснащении гидроусилителем
Недостатки:
Из-за простоты конструкции любой толчок от колес передается на руль
Трудности в изготовлении механизма с высоким передаточным числом, поэтому для тяжелых машин такой механизм не подходит.
Выбор и обоснование выбранной конструкции
По своим технологическим, ценовым, конструктивным качествам рулевой механизм «шестерня-рейка» наиболее подходит для переднеприводной компоновки и подвески McPherson, обеспечивая большую легкость и точность рулевого управления.
При проектировании автомобиля ВАЗ-2123, старались взять как можно больше узлов из модели ВАЗ-2121, поэтому на автомобиле ставили механизм типа “червяк-ролик”. Однако Chevrolet Niva не является мощным внедорожником, что бы на него целесообразно было ставить этот механизм. Он дороже, технологически сложен, тяжелее. Возможности, которые дает автомобилю червячный механизм, не используются в полной мере. При использовании рейкм, исключается концентрация напряжения от рулевого механизма на лонжероне, нет необходимости усиливать его в месте крепления механизма.
По всем этим причинам я считаю необходимым заменить механизм типа “червяк-ролик” на более дешевый, легкий, технологичный реечный механизм, который в необходимой мере обеспечивает легкость и точность рулевого управления.
В связи с тем, что будет заменен тип механизма, необходимо внести ряд изменений в конструкцию других узлов и агрегатов:
Так как за осью передних колес расположить реечный механизм не представляется возможным, то ставим его перед осью;
Для того чтобы освободить место между поддоном двигателя и дифференциалом для рейки, смещаем межколесный дифференциал на то же расстояние (20,5мм) назад, что не изменяет сбалансированность всего узла;
Так как рейка располагается перед осью, то тормозной суппорт колеса необходимо расположить сзади.
Он обеспечивает поворот управляемых колес с небольшим усилием на рулевом колесе. Это может быть достигнуто за счет увеличения передаточного числа рулевого механизма. Однако передаточное число ограничено количеством оборотов рулевого колеса. Если выбрать передаточное число с количеством оборотов рулевого колеса больше 2-3, то существенно увеличивается время, требуемое на поворот автомобиля, а это недопустимо по условиям движения. Поэтому передаточное число в рулевых механизмах ограничивают в пределах 20-30, а для уменьшения усилия на рулевом колесе в рулевой механизм или привод встраивают усилитель.
Ограничение передаточного числа рулевого механизма также связано со свойством обратимости, т. е. способностью передавать обратное вращение через механизм на рулевое колесо. При больших передаточных числах увеличивается трение в зацеплениях механизма, свойство обратимости пропадает и самовозврат управляемых колес после поворота в прямолинейное положение оказывается невозможным.
Рулевые механизмы в зависимости от типа рулевой передачи разделяют на:
червячные,
винтовые,
шестеренчатые.
Рулевой механизм с передачей типа червяк - ролик имеет в качестве ведущего звена червяк, закрепленный на рулевом валу, а ролик установлен на роликовом подшипнике на одном валу с сошкой. Чтобы сделать полное зацепление при большом угле поворота червяка, нарезку червяка выполняют по дуге окружности - глобоиде. Такой червяк называют глобоидным.
В винтовом механизме вращение винта, связанного с рулевым валом, передается гайке, которая заканчивается рейкой, зацепленной с зубчатым сектором, а сектор установлен на одном валу с сошкой. Такой рулевой механизм образован рулевой передачей типа винт-гайка-сектор.
В шестеренчатых рулевых механизмах рулевая передача образуется цилиндрическими или коническими шестернями, к ним же относят передачу типа шестерня-рейка. В последних цилиндрическая шестерня связана с рулевым валом, а рейка, зацепленная с зубьями шестерни, выполняет роль поперечной тяги. Реечные передачи и передачи типа червяк-ролик преимущественно применяют на легковых автомобилях, так как обеспечивают сравнительно небольшое передаточное число. Для грузовых автомобилей используют рулевые передачи типа червяк-сектор и винт-гайка-сектор, снабженные либо встроенными в механизм усилителями, либо усилителями, вынесенными в рулевой привод.
3.2.Рулевой привод.
Конструкции рулевого привода различаются расположением рычагов и тяг, составляющих рулевую трапецию, по отношению к передней оси. Если рулевая трапеция находится впереди передней оси, то такая конструкция рулевого привода называется передней рулевой трапецией, при заднем расположении - задней трапецией. Большое влияние на конструктивное исполнение и схему рулевой трапеции оказывает конструкция подвески передних колес.
При зависимой подвеске (рис. 2.(а)) рулевой привод имеет более простую конструкцию, так как состоит из минимума деталей. Поперечная рулевая тяга в этом случае сделана цельной, а сошка качается в плоскости, параллельной продольной оси автомобиля. Можно сделать привод и с сошкой, качающейся в плоскости, параллельной переднему мосту. Тогда продольная тяга будет отсутствовать, а усилие от сошки передается прямо на две поперечные тяги, связанные с цапфами колес.
При независимой подвеске передних колес (рис. 2.(б)) схема рулевого привода конструктивно сложнее. В этом случае появляются дополнительные детали привода, которых нет в схеме с зависимой подвеской колес. Изменяется конструкция поперечной рулевой тяги. Она сделана расчлененной, состоящей из трех частей: основной поперечной тяги и двух боковых тяг - левой и правой. Для опоры основной тяги служит маятниковый рычаг, который по форме и размерам соответствует сошке. Соединение боковых поперечных тяг с поворотными рычагами цапф и с основной поперечной тягой выполнено с помощью шарниров, которые допускают независимые перемещения колес в вертикальной плоскости. Рассмотренная схема рулевого привода применяется главным образом на легковых автомобилях.
Рулевой привод, являясь частью рулевого управления автомобиля, обеспечивает не только возможность поворота управляемых колес, но и допускает колебания колес при наезде ими на неровности дороги. При этом детали привода получают относительные перемещения в вертикальной и горизонтальной плоскостях и на повороте передают усилия, поворачивающие колеса. Соединение деталей при любой схеме привода производят с помощью шарниров шаровых либо цилиндрических.